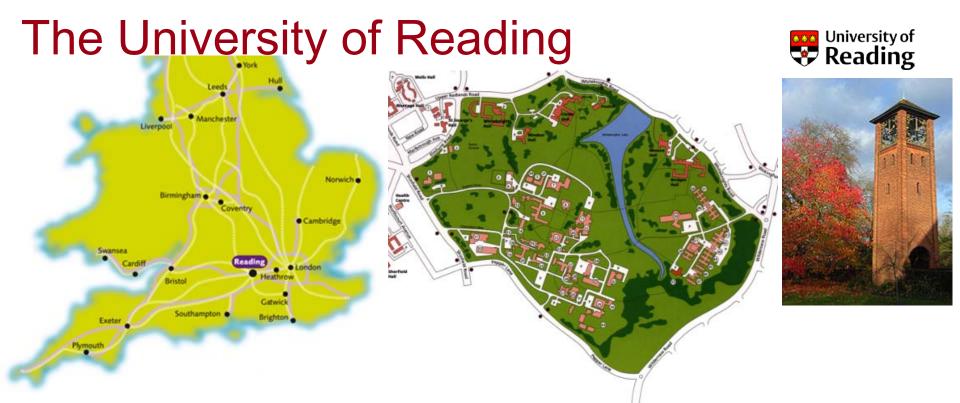
NexTech 2011 - AP2PS 2011 The Third International Conference on Advances in P2P Systems, November 20-25, 2011, Lisbon, Portugal

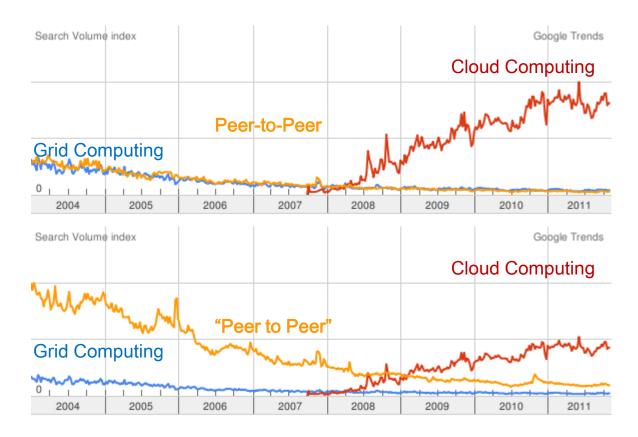

Keynote Presentation: Epidemic Protocols in Peer-to-Peer Computing

Dr. Giuseppe Di Fatta

G.DiFatta@reading.ac.uk

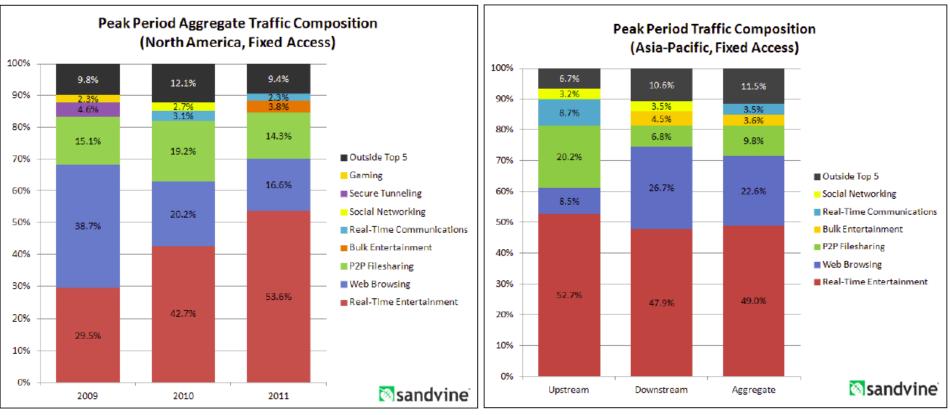
Monday, November 21, 2011

- Established in 1892 as an extension of the Christ Church College of the University of Oxford.
- Received its Royal Charter in 1926.
- Awarded the Queen's Anniversary Prize for Higher and Further Education in 1998, 2005 and 2009.
- One of the ten most research intensive universities in the UK.
- Campus voted as one of best green spaces in the UK in 2011.


Outline

- Introduction
- Gossip or Epidemic protocols
 - robustness and efficiency
 - push vs. pull schemes
 - convergence speed and accuracy
- Applications in large-scale systems
 - information dissemination vs. global knowledge
 - the data aggregation problem
- Future applications in/of P2P systems
- Open issues, research directions and conclusions

Is Peer-to-Peer in Decline?

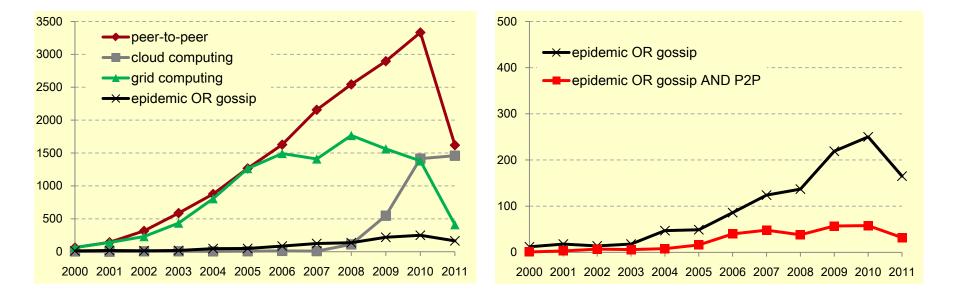

- Google trends are often (and arguably) shown as
 - evidence for the decline of a subject or
 - to advocate the rise of another

Is Peer-to-Peer in Decline?

- Facts [source: Sandvine's Global Internet Phenomena Report: Fall 2011]
 - P2P file sharing traffic as % of overall IP traffic has declined
 - overall IP traffic and P2P file sharing traffic have increased

Dr. G. Di Fatta

Is Peer-to-Peer in Decline?



- Decline of P2P file sharing applications
 - Security and legal issues
 - Malware distributed in place of content
 - Many organisations block ports of P2P applications
 - P2P has been replaced by other means of file sharing
 - RapidShare, Megavideo, iTunes, iPlayer, Hulu, Netflix, etc.
- P2P paradigm emancipation
 - applications beyond file sharing
 - VoIP, video chat, live video streaming,
 - data-intensive ad-hoc applications, e.g., the CERN Advanced Storage system (CASTOR)
 - volunteer computing, Clouds integration
 - social media, online social networking

Papers Statistics

- Source: IEEE Xplore
 - Keyword search: Metadata Only
 - Publisher: IEEE
 - Content Types: Conferences, Journals
 - Subjects: Computing & Processing (Hardware/Software), Communication, Networking & Broadcasting

Gossip

- Etymology: "gossip" is from Old English *godsibb* (= godparent)
- Gossip is rumor, possibly the oldest and most common mean of <u>sharing facts and</u> <u>opinions</u>.
 - peer to peer information spreading
- From an evolutionary biology point of view, it aids social bonding in large groups.
 - overlay networks
- From an evolutionary psychology point of view, it aids building cooperative reputations and maintaining widespread indirect reciprocity: altruistic behaviour is favoured by the probability of future mutual interactions (randomly chosen pair-wise encounters).
 - tit for tat

We're Not Gossiping. We're Networking.

Epidemic

- Etymology: "epidemic" is from Greek words *epi* and *demos* (= upon or above people).
- In epidemiology it is a disease outbreak. It occurs when new cases exceed a "normal" expectation of propagation (a contained propagation).
 - The disease spreads person-to-person: the affected individuals become independent reservoirs leading to further exposures.
 - In uncontrolled outbreaks there is an exponential growth of the infected cases.

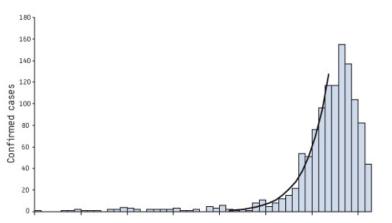
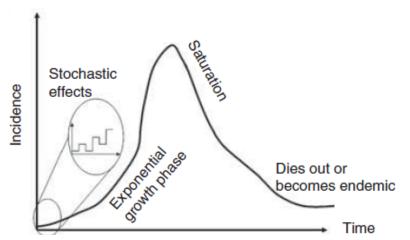



Figure from: "Rapid communications A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009", P Y Boëlle, P Bernillon, J C Desenclos, Eurosurveillance, Volume 14, Issue 19, 14 May 2009

Figure from: "Controlling infectious disease outbreaks: Lessons from mathematical modelling", T Déirdre Hollingsworth, Journal of Public Health Policy 30, 328-341, Sept. 2009

Dr. G. Di Fatta

A Bio-Inspired Paradigm

- Epidemic or Gossip protocols are <u>a communication and</u> <u>computation paradigm for large-scale networked systems</u>
 - based on randomised communication,
 - provides
 - scalability,
 - probabilistic guarantees on convergence speed and accuracy,
 - robustness, resilience,
 - fault-tolerance, high stability under disruption,
 - computational and communication efficiency.

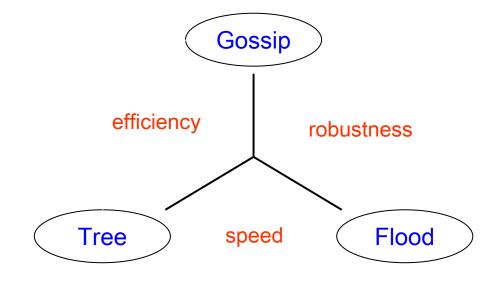
Seminal Work and History

- Clearinghouse Directory Service, Demers et al., Xerox PARC, 1987
- The refdbms distributed bibliographic database system, Golding et al., 1993
- Bayou project, Demers et al., Xerox PARC, 1993-97
- Bimodal Multicast, Cornell, 1998
- Astrolabe, Cornell, 1999
- 2000-2005, a few papers studied and extended the use of Epidemic approaches in communication networks and distributed systems

Applicability

- Information Dissemination
 - Epidemic protocols can be used to disseminate information in largescale distributed environments.
 - broadcasting, multicasting, failure detection, synchronisation, sampling, replica maintenance, monitoring, management, etc.
- Data Aggregation
 - Epidemic protocols can also be adopted to solve the data aggregation problem in a fully decentralized manner.
- Complex applications can be built from these basic services for very dynamic and very large-scale distributed systems.
 - e.g., fully decentralised Data Mining applications for large-scale distributed systems.

Information Dissemination



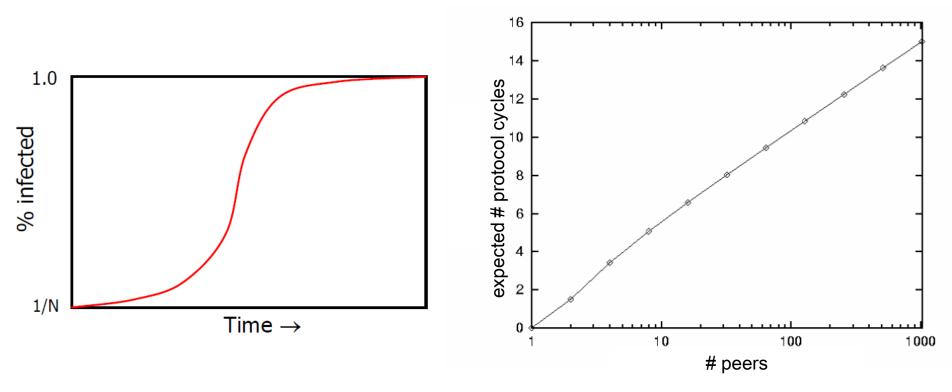
- Epidemic information dissemination with probabilistic guarantees:
 - Anti-entropy
 - every node periodically chooses another node at random and resolves any differences in state
 - Rumour mongering
 - infected nodes periodically choose a node at random and spread the rumour
 - Gossiping
 - each node forwards a message probabilistically

Information Dissemination

- Protocols for information dissemination in large-scale systems should have the following properties:
 - Efficiency, Robustness, Speed, Scalability
- Alternative approaches:
 - Tree-based: efficient, but fragile and difficult configuration
 - Flooding: robust, but inefficient
 - Gossip-based: both efficient and robust, but has relatively high latency

Gossip-based Protocol

- Based on randomised communication and
 - peer selection mechanism
 - definition of state and merge function


- Repeat
 - wait some ΔT
 - chose a random peer
 - send local state

- Repeat
 - receive remote state
 - merge with local state

Dr. G. Di Fatta

Gossip Propagation Time

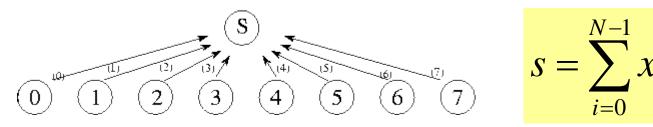
• Time to propagate information originated at one peer

Variants

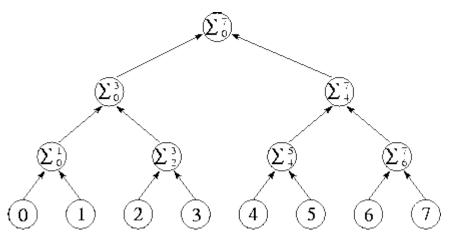
Reading

- Push epidemic
 - each peer sends state to other member
- Pull epidemic
 - each peer requests state from other member
 - starts slowly, ends quickly
 - expected #rounds the same
- Push/Pull epidemic
 - Push and Pull in one exchange
 - reduces #rounds, but increases overhead

Data Aggregation

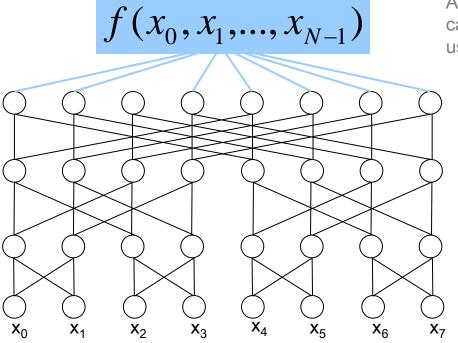

- (a.k.a. the "node aggregation" problem)
- Given a network of N nodes, each node i holding a local value x_i,
- the goal is to determine the value of a global aggregation function f() at every node:

 $f(x_0, x_1, ..., x_{N-1})$


- Example of aggregation functions:
 - sum, average, max, min, random samples, quantiles and other aggregate databases queries.

Aggregation: e.g., Sum

 Centralised approach: all receive operations, and all additions, must be serialized: O(N)



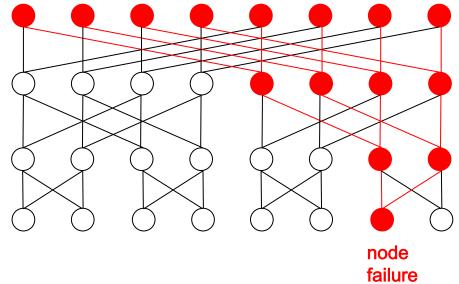
 Divide-and-conquer strategy to perform the global sum with a binary tree: the number of communication steps is reduced from O(N) to O(log(N)).

Dr. G. Di Fatta

All-to-all Communication

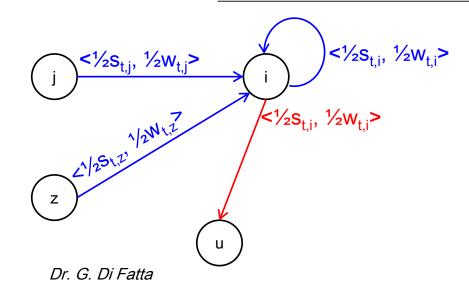
- MPI AllReduce
 - MPI predefined operations: max, min, sum, product, and, or, xor
 - all processes compute identical results
 - number of communication steps: log(N)
 - number of messages: N*log(N)

Any global function which can be approximated well using linear combinations.



Fault-Tolerance and Robustness

- The parallel approach is not fault tolerant.
- Even a single node or link failure cannot be tolerated.
- A delay on a single communication link has an effect on all nodes.



 In large-scale and dynamic distributed systems we require the protocols to be decentralised and fault-tolerant.

The Push-Sum Protocol (PSP)

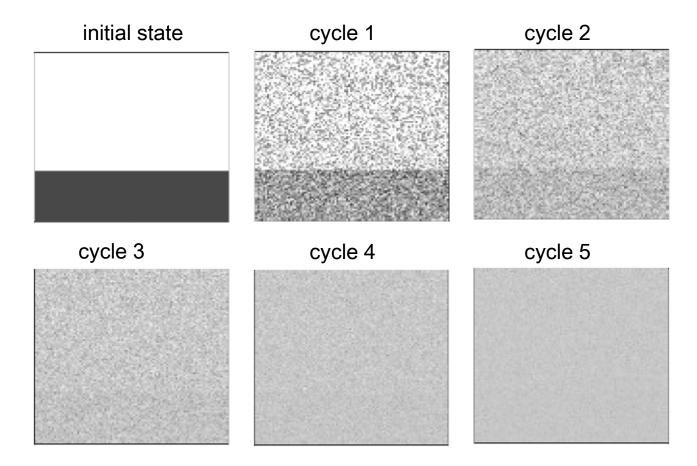
- Each node i holds and updates the local sum s_{t,i} and a weight w_{t,i}.
- Initialisation:
 - Node i sends the pair $\langle x_i, w_{0,i} \rangle$ to itself.
- At each cycle t:
- Algorithm 1 Protocol Push-Sum
 - 1: Let $\{(\hat{s}_r, \hat{w}_r)\}$ be all pairs sent to *i* in round t-1
 - 2: Let $s_{t,i} := \sum_r \hat{s}_r, w_{t,i} := \sum_r \hat{w}_r$
 - 3: Choose a target $f_t(i)$ uniformly at random
 - 4: Send the pair $(\frac{1}{2}s_{t,i}, \frac{1}{2}w_{t,i})$ to $f_t(i)$ and *i* (yourself)
 - 5: $\frac{s_{t,i}}{w_{t,i}}$ is the estimate of the average in step t

• Update at node i:

$$S_{t+1,i} = \frac{1}{2}S_{t,j} + \frac{1}{2}S_{t,i} + \frac{1}{2}S_{t,z}$$
$$W_{t+1,i} = \frac{1}{2}W_{t,j} + \frac{1}{2}W_{t,i} + \frac{1}{2}W_{t,z}$$

variance reduction step

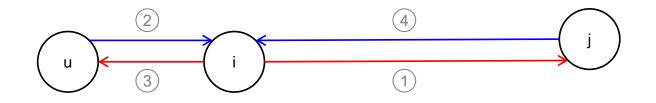
The Push-Sum Protocol (PSP)


• Settings for various aggregation functions:

Function	Description
Sum	$v_i = \text{local value}$ $w_i = 1$ at a single node, 0 at all other nodes
Count	$v_i = 1$ $w_i = 1$ at a single node, 0 at all other nodes
Average	$v_i = \text{local value}$ $w_i = 1$
Weighted Average	$v_i = \text{local value} \times \text{local weight}$ $w_i = \text{local weight}$

 Convergence: with probability 1-δ the relative error in the approximation of the global aggregate is within ε, in at most O(log(N) + log(1/ε) + log(1/δ)) cycles.

Example: Average


(Figure from: Mark Jelasity, RESCOM 2008)

The Push-Pull Gossip (PPG) Protocol

- At each push PPG introduces a symmetric pull operation: local pairs are exchanged.
 - Node i selects a random node j to exchange their local pairs.
 - Each node compute the average and updates the local pair.

variance reduction step: $\begin{vmatrix} s_{t+1,i} = \frac{1}{2}(s_{t,j} + s_{t,i}) \\ w_{t+1,i} = \frac{1}{2}(w_{t+1} + w_{t+1}) \end{vmatrix}$ The push-pull operations need to be performed atomically.

- If not, the conservation of mass in the system is not guaranteed and the protocol does not converge to the true global aggregate.

Wiversity of Reading

<s_{t,j}, w_{t,j}>

<s_{t,i}, w_{t,i}>

Mass Conservation Invariant

- The mass conservation invariant states that the average of all local sums is always the correct average and the sum of all weights is always N.
- Protocols violating this invariant cannot converge to the true global aggregate.

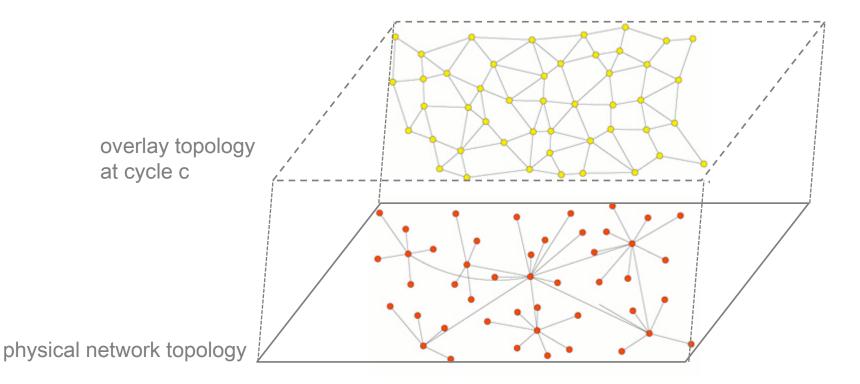
Diffusion Speed

- The diffusion speed is how quickly values originating at a source diffuse evenly through a network (convergence).
 - number of protocol iterations such that the value at a node is diffused through the network, i.e., a peak distribution is transformed in a uniform distribution.
 - The diffusion speed is typically given as the complexity of the number of iteration steps as function of the network size, maximum error and maximum probability that the approximation at a node is larger than the maximum error.

• Diffusion speed: with probability 1- δ the relative error in the approximation of the global aggregate is within ε , in at most $O(\log(N) + \log(1/\varepsilon) + \log(1/\delta))$ cycles, where ε and δ are arbitrarily small positive constants.

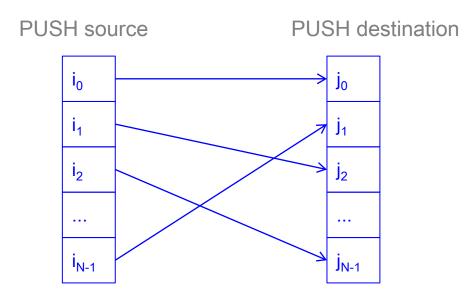
Convergence Factor

- At each cycle, each node estimates the global aggregate.
- This estimated value converge exponentially fast.
- The convergence factor is the speed with which the local approximations converge towards a target value (not necessarily the true global aggregate).
- The convergence factor between cycle t+1 and cycle t is given by the ratio of the variance:

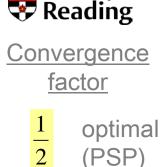

$$E(\sigma_{t+1}^2)/E(\sigma_t^2)$$

• A smaller factor gives faster convergence.

Peer Selection


 At each cycle (synchronous model), the peers involved in communication operations define a transient random overlay network.

Random Overlay Network



- Directed network edge <i,j>: peer p_i sends a PUSH msg to peer p_i.
- At each cycle, there is a list of edges, i.e., two lists of peers (src and dest)
 - Source list: $p_{i_0}, p_{i_1}, ..., p_{i_{N-1}}$ Dest. list: $p_{j_0}, p_{j_1}, ..., p_{j_{N-1}}$

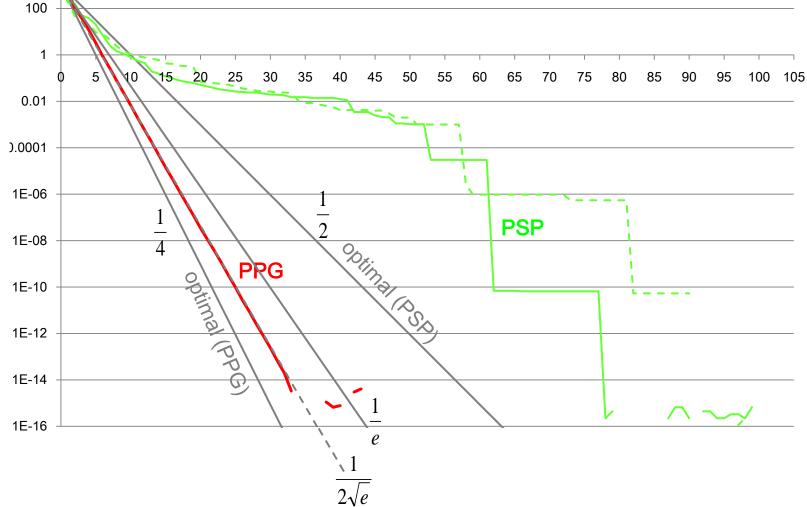


Random Overlay Network

- Random peer selection for push/pull operations
 - perfect matching (PSP): matching of pairs to achieve perfect distribution of push operations: each node sends a push and receives a push.
 - perfect matching (PPG): matching of pairs to achieve perfect distribution of push and pull operations: each node sends a push and a pull and receives a push and a pull.
 - <u>random pairs (PPG)</u>: push operations both sent and received by a node follow the binomial distribution.
 - <u>random PUSH target</u>: matching of pairs to achieve perfect distribution of push (not pull) operations: each node sends a push and may receive zero, one or more push messages.

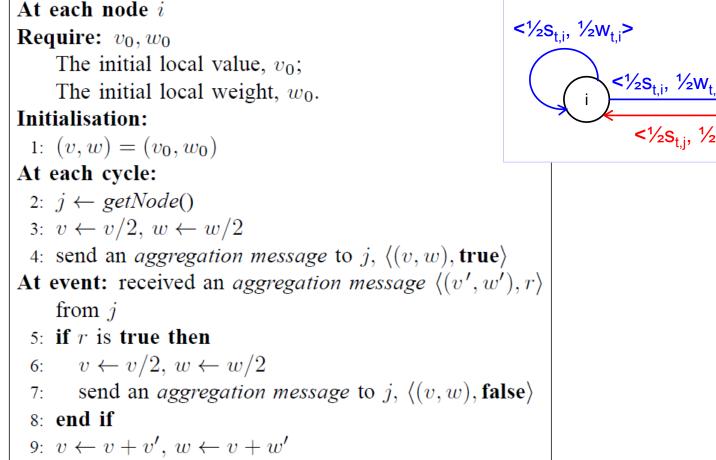
University of

 $\frac{1}{e} \approx \frac{1}{2.718} \approx 0.368$


 $\frac{1}{2\sqrt{e}} \approx \frac{1}{3.297} \approx 0.303$

Practical Peer Sampling

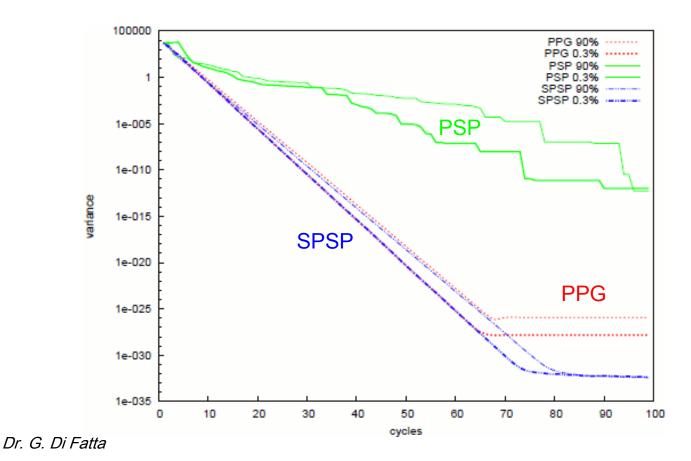
- Practical peer selection in a large-scale distributed system for push/pull operations:
 - <u>Peer Selection Protocol</u>:
 - A local cache of (max size) peer IDs is maintained and used to draw a random sample of peers.
 - The node cache is initialised with the known physical neighbours.
 - Caches are exchanged (likewise push/pull messages) and randomly trimmed to a maximum size.
 - This is equivalent to multiple random walks: the cache entries quickly converges to a random sample of the peers with uniform distribution (in expander graphs).


PPG vs PSP

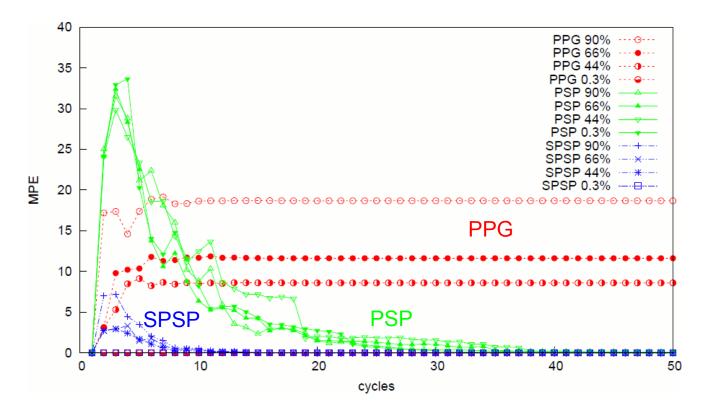
- Not surprisingly PPG has faster diffusion speed than PSP.
 - At each cycle, in PPG twice #messages are sent w.r.t. PSP.
 - The symmetry in the push-pull scheme allows every single node to be involved in <u>at least one</u> variance reduction step per cycle.
- In PSP at each cycle, a node has 37% chance of not receiving any push. In practical implementations of the peer sampling operation, this may generate connectivity problems.
- PPG requires atomic push-pull operations to guarantee the mass conservation invariant.
 - Atomic push-pull operations can be complex.

The Symmetric Push-Sum Protocol (SPSP)

- SPSP is a Push-Pull scheme with asynchronous communication
 - no atomic operation is required.



Comparative Analysis (PSP, PPG, SPSP) Reading


- Convergence speed: variance of the estimated global aggregate over time
 - Percentage of operations with atomicity violation (AVP): 0.3% and 90%,
 - Internet-like topologies, 5000 nodes.
 - PPG and SPSP convergence speed is similar w.r.t. AVP.

Comparative Analysis (PSP, PPG, SPSP)

- The mean percentage error (MPE) over time
 - different AVP levels (from 0.3% to 90%)
 - averages over 100 different simulations: Internet-like and mesh topologies, 1000-5000 nodes, different data distributions.
 - Only PSP and SPSP converge to the true global aggregate value.

Applications

- Gossip-based protocols have been adopted for applications in
 - network management and monitoring, failure detection, DB replica synchronisation and maintenance, etc.
- Gossip-based protocols can be adopted to build complex applications in P2P systems.
 - global vs. total knowledge: aggregation
 - values of aggregate functions more important than individual data
 - discovery of global patterns and trends

Epidemic Data Mining for Global Knowledge Discovery in Peer-to-Peer Networks

Online Social Networks and P2P

- Online Social Networks (OSNs)
 - Web-based services that allow building relations among people to share information, activities and interests.
 - based on a centralised approach
 - several concerns: data ownership, privacy policies and scalability
- <u>Decentralised Online Social Networks</u> (DOSNs)
 - based on P2P overlay networks
 - motivated by privacy concerns and software freedom considerations
 - currently many serverless OSN frameworks and platforms are being studied and developed (e.g., *Diaspora*, *Tribler*, *Spar*, *What's up*, *Scope*, *SuperNova*, *PrPI*, OneSocialWeb)

Diaspora - the privacy aware, personally controlled, do-it-all distributed open source social network

The friends like http://kck.st/9QC2zk

ABOUT THIS PROJECT

We're fully funded! Check out some of the other great projects on Kickstarter

Diaspora - the privacy aware, personally controlled, do-it-all distributed

Once the software is released as open source, we will send you a CD with diaspora all set up and ready to go, with a note from our team!

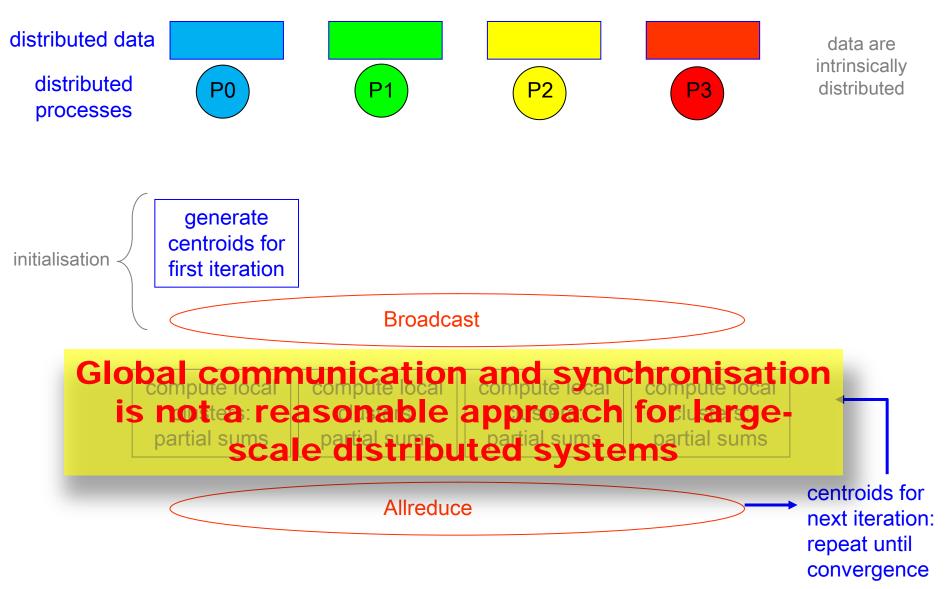
PLEDGE \$10 OR MORE

1083 BACKERS

Clustering in DOSNs

- Scenario:
 - let us consider the case people in a DOSN want to find out about other people with similar orientation/preferences for socio-political issues, music, movies, etc.
 - We'd first need to deploy a distributed and fully decentralised <u>Clustering</u> algorithm to determine the groups of similar users <u>globally</u>, without the possibility to collect global data in a single server.
- Solution: Epidemic K-Means Clustering

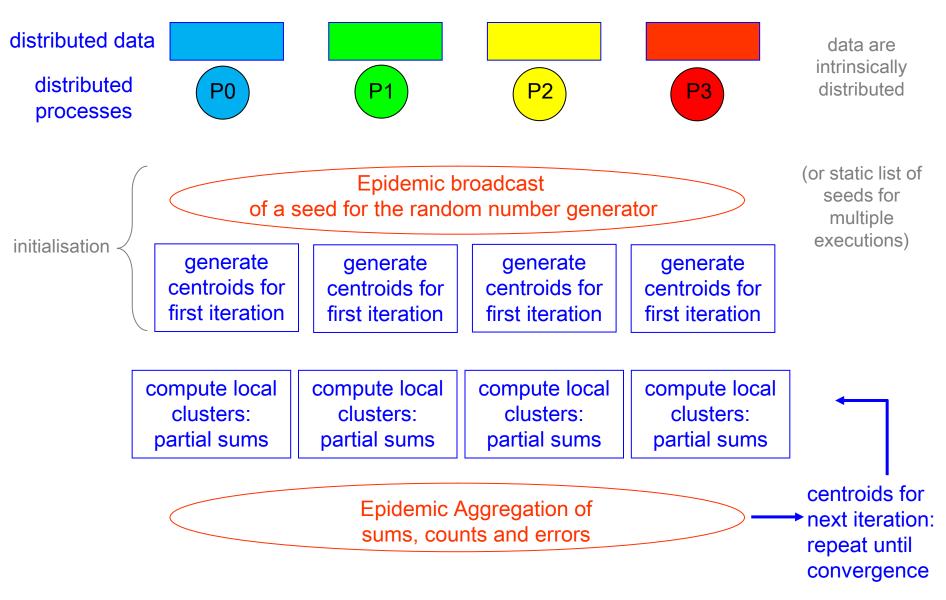
Clustering Analysis


- Cluster Analysis is the process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called clusters.
 - natural grouping or structure in a data set.
- Cluster analysis = Grouping a set of data objects into clusters
- Cluster: a collection of data objects
 - similar to one another within the same cluster
 - dissimilar to the objects in other clusters
- Clustering is unsupervised classification:
 - no predefined classes

- K-Means Clustering is one of the most popular and influential Data Mining algorithms

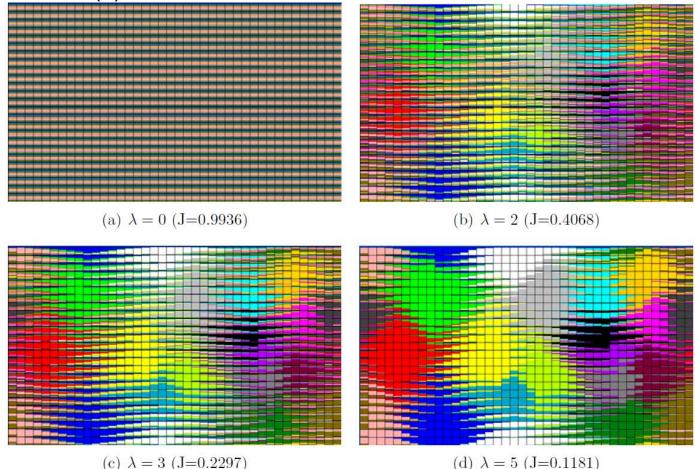
Inter-cluster

Distributed K-Means


P2P K-Means Clustering

- Distributed K-Means (state of the art) algorithms for large-scale systems are based on a sampling strategy.
 - The parallel K-Means algorithm is applied to a subset of network nodes.
- Variants:
 - Local P2P Sampling-based K-Means
 - Each node communicates and synchronises only with its physical neighbours
 - Random Sampling-based P2P K-Means
 - Each node communicates and synchronises with a random sample of network nodes. The sample changes at each K-Means iteration.
 - Uniform Sampling-based P2P K-Means
 - Master-slave approach: only a leader node determines the final solution.

Epidemic K-Means

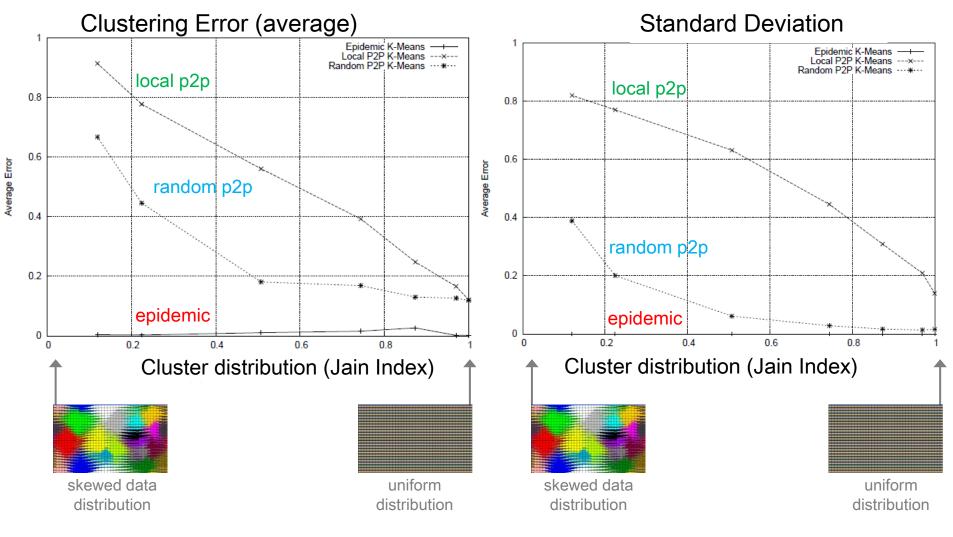


Simulations - Data Distributions

- Each node has a fixed number of data points (100).
- Each data point belongs to a category (colour).
- Data points are assigned to nodes from uniformly at random (a) to localitydependent allocation (d).

Clustering Accuracy

• Accuracy w.r.t. the "ideal" (centralised) data clustering



Dr. G. Di Fatta

Mean Square Error of Centroids

• Error w.r.t. the "ideal" (centralised) centroids

Dr. G. Di Fatta

Conclusions

- Is P2P in decline?
 - Yes, file sharing P2P is in relative decline.
 - No, the P2P paradigm is no longer identified with "file sharing".
- Epidemic or Gossip protocols are a bio-inspired paradigm for communication and computation in large-scale distributed systems
 - scalability: do not rely on central coordination, nor in deterministic overlay networks
 - global vs. total knowledge: values of aggregate functions more important than individual data
- Information Dissemination and Aggregation have been studied extensively. Their practical applicability to complex applications is only beginning to be shown.
 - Epidemic K-Means Clustering
- Open issues and research directions
 - Bootstrap, synchronisation and termination
 - Self-stabilisation: with massive distribution comes massive instability

References

- Mathematical models of Epidemics
 - Nicholas C. Grassly & Christophe Fraser, "Mathematical models of infectious disease transmission, Nature Reviews Microbiology 6, 477-487 (June 2008)
- Gossip-based protocols for information dissemination:
 - A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, D. Terry, Epidemic algorithms for replicated database maintenance, in: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, PODC '87, ACM, 1987, pp. 1–12.
 - R. Karp, C. Schindelhauer, S. Shenker, B. Vocking, Randomized rumor spreading, in: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 2000, pp. 565–.
 - Eugster, P.T.; Guerraoui, R.; Kermarrec, A.-M.; Massoulie, L.; , "Epidemic information dissemination in distributed systems," Computer , vol.37, no.5, pp. 60- 67, May 2004.
- Gossip protocols for the data aggregation problem:
 - D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate information, in: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 482 – 491.
 - M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large dynamic networks, ACM Transactions on Computer Systems 23, 2005, 219–252.
 - S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algorithms, Information Theory, IEEE Transactions on 52 (6), 2006, 2508 2530.
 - F. Blasa, S. Cafiero, G. Fortino, G. Di Fatta, "Symmetric Push-Sum Protocol for Decentralised Aggregation", The International Conference on Advances in P2P Systems (AP2PS), Lisbon, Portugal, Nov. 20-25, 2011.
- Gossip-based protocols surveys and general studies:
 - Samir Khuller, Yoo-Ah Kim, and Yung-Chun Wan, "On generalized gossiping and broadcasting", Journal of Algorithms, 59, 2, May **2006**, 81-106.
 - "Dependability in aggregation by averaging," P. Jesus, C. Baquero, and P. Almeida, 1st Symposium on Informatics (INForum 2009), Sept. 2009, pp. 482–491.
 - Rafik Makhloufi, Gregory Bonnet, Guillaume Doyen, and Dominique Gaiti, "Decentralized Aggregation Protocols in Peer-to-Peer Networks: A Survey", The 4th IEEE International Workshop on Modelling Autonomic Communications Environments (MACE), 2009.
 - P. Jesus, C. Baquero, and P. Almeida, "Dependability in aggregation by averaging", 1st Symposium on Informatics (INForum 2009), Sept. 2009, pp. 482–491.

References

- Parallel and Distributed K-Means Clustering:
 - I. S. Dhillon and D. S. Modha, "A data-clustering algorithm on distributed memory multiprocessors," Workshop on Large-Scale Parallel KDD Systems, pp. 245–260, Mar. 2000.
 - S. Datta, C. Giannella, and H. Kargupta, "K-means clustering over a large, dynamic network", in Proceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, Maryland, USA, **2006**, pp. 153–164.
 - S. Datta, C. Giannella, and H. Kargupta, "Approximate distributed k-means clustering over a peer-to-peer network", IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 10, pp. 1372–1388, **2009**.
 - G. Di Fatta, F. Blasa, S. Cafiero, G. Fortino, "Epidemic K-Means Clustering", IEEE ICDM Workshop on Knowledge Discovery Using Cloud and Distributed Computing Platforms (KDCloud), Vancouver, Canada, 11 Dec. 2011.